LABDANE DITERPENES FROM AN ACACIA SPECIES

PETER G. FORSTER, EMILIO L. GHISALBERTI and PHILLIP R. JEFFERIES

Department of Organic Chemistry, University of Western Australia, Nedlands, 6009, Western Australia, Australia

(Received 26 March 1985)

Key Word Index—Acacia sp.; Leguminosae; diterpenes; (13E)-labd-13-ene-3 α ,8 β ,15-triol; (13E)-3 α ,8 β -dihydroxy-labd-13-en-15-oic acid.

Abstract—Two new diterpenes, (13E)-labd-13-ene-3 β ,8 α ,15-triol and (13E)-3 β ,8 α -dihydroxylabd-13-en-15-oic acid have been isolated from an unclassified *Acacia* sp. Chemical and spectroscopic evidence for their structure is presented. The known labdanes, sclareol, 13-epi-sclareol and (13E)-labd-13-ene-8 α ,15-diol were also isolated.

INTRODUCTION

In continuation of our investigation of the chemistry of Western Australian plants, we have examined the constituents of the resin of an unclassified species of the genus *Acacia*, a voucher specimen (No 00117633) of which has been deposited in the Western Australian Herbarium. Five labdane diterpenes were isolated: sclareol (1), 13-epi-sclareol (2) and (13E)-lab-13-ene-8 α ,15-diol (3) are known compounds; (13E)-labd-13-ene-3 β ,8 α ,15-triol (4) and (13E)-3 β ,8 α -dihydroxylabd-13-en-15-oic acid (8) are new labdanes. Chemical and spectroscopic evidence for the structure and absolute stereochemistry of these new compounds is presented in this report.

RESULTS AND DISCUSSION

The ether extract of the leaves and terminal branches of Acacia sp. was partitioned into a neutral and acid fractions. Alumina chromatography of the neutral portion afforded fractions of sclareol (1) and 13-epi-sclareol (2) in a 1:1 ratio as evidenced by ¹H and ¹³C NMR spectroscopy. The ¹³C NMR spectrum of this mixture was compared with that reported for sclareol [1] and this allowed the 13C NMR signals for 13-epi-sclareol to be assigned (Table 1). A second neutral compound isolated was shown to be labd-13-ene-8a,15-diol (3) by comparison of mp and $[\alpha]_D$ values with those published [2] and by comparison of the ¹H and ¹³C NMR spectra with those of an authentic sample [3] of the enantiomeric diol [the $[\alpha]_D$ values published for both enantiomers, $+0.7^{\circ}$ [3] and -0.5° [2] are extremely low. More meaningful values are obtained if optical rotations are taken at 365 nm (see Experimental)].

The most polar compound isolated was shown to be a triol (4), $C_{20}H_{36}O_3$, since it formed a diacetate (5) whose IR spectrum showed absorption for a hydroxyl group. The ¹H NMR spectrum of 4 was essentially similar to that of 3 except for the presence of extra signals for a hydroxymethine proton (δ 3.25, $W_{1/2} = 18$ Hz) and a downfield shift (δ 0.87–0.99) for one of the three tertiary methyl groups. Comparison of the ¹³C NMR spectra of 3 and 4 suggested that the extra hydroxyl group was located at C-3 since significant chemical shift differences were

observed for the carbons assigned to ring-A and its pendant groups (Table 1). Interrelation of 4 with the known [4] diol 6 confirmed this and also established the absolute configuration of 4. To this end the diacetate 5 was treated with at 0° to give a mixture of 7 and its Δ^8 -isomer (2:1) which on treatment with lithium aluminium hydride gave the corresponding diols. Chromatography of the mixture on alumina-silver nitrate (9:1) afforded a small amount of the diol 6, mp $161-163^{\circ}$ [α]_D + 24.8° (lit. [4], mp $164-165^{\circ}$, for the enantiomer [5], mp $160.5-162^{\circ}$, α]_D - 27°).

The configuration at C-8 in 4 can be assigned from consideration of the 1 H and 13 C NMR spectra. The chemical shift of the C-10 methyl in the 1 H NMR spectrum of 4 occurs at δ 0.82 indicating the absence of a 1,3-diaxial interaction with the C-8 hydroxyl group which otherwise would result in a downfield shift to δ 0.95 [6]. More significantly, in the 13 C NMR spectra of 8-hydroxylated labdanes an equatorial hydroxyl group has a deshielding effect on C-17 of 6.5 ppm compared to the axial, C-17 resonating at δ 24.0 [1, 7] instead of δ 30.5 [8]. This is consistent with effects observed [9] on model systems. In addition C-9 is shielded by 2.6 ppm when the hydroxyl at C-8 is equatorial (δ 61.4 vs δ 58.8). Since the 13 C NMR spectrum of 4 shows C-17 at 23.8 and C-9 at δ 62.4 the hydroxyl at C-8 is equatorial (8*R*-configuration).

The major acidic component isolated from Acacia sp. appeared, from the spectral data of the more soluble methyl ester, to be the dihydroxy acid 8 and this was confirmed by reduction of the methyl ester 9 with aluminium hydride which gave a triol identical with the natural product 4. The 3-acetoxy derivative (10) of 9 and the 3-oxo derivative (11) of 8 were prepared for ¹³C NMR spectral analysis (Table 1).

EXPERIMENTAL

General experimental details have been described [10].

Isolation of metabolites from Acacia sp. Leaves and terminal branches of a sample (220 g) of Acacia sp., collected north of Hyden, Western Australia, were extracted with Et₂O. The extract was partitioned into 8% aq. NaHCO₃ soluble (4.48 g), 10% aq. NaOH soluble (8.55 g) and neutral fractions (25.65 g). A portion (20 g) of the neutral fraction was partitioned between 5% aq.

2992

3

 R^1 Н αΗ, βΟΗ Me αΗ, βΟΗ 10 Me αΗ, βΟΑς 11 Н 0

MeOH and petrol and a portion of the MeOH soluble (8 g from 15.9 g) fraction was chromatographed on alumina (neutral, act. III). Elution with EtOAc-CH₂Cl₂ (1:9) gave a yellow oil (633 mg) which was purified by prep. TLC to give the mixture of sclareol (1) and 13-epi-sclareol (2, 351 mg), mp 93-94° (lit. [11]

Elution with EtOAc-CH₂Cl₂ (1:1) yielded a fraction of the diol 3 (180 mg) which crystallized from Et₂O as cubes, mp 128°, $[\alpha]_{589} - 0.5^{\circ} (c \ 0.8, CHCl_3), [\alpha]_{578} \ 0.0^{\circ}, [\alpha]_{546} \ 0.0^{\circ}, [\alpha]_{436} + 0.9^{\circ},$ $[\alpha]_{365} + 2.3^{\circ}$ (lit. [8], mp 129°, $[\alpha]_{D} - 0.5^{\circ}$). Optical rotation measurements on a sample of the enantiomer showed $[\alpha]_D + 0.7$ [3], $[\alpha]_{578}$ 0.0° (c 0.9, CHCl₃), $[\alpha]_{546}$ -0.7°, $[\alpha]_{436}$ -1.4°, $[\alpha]_{365}$ -3.5°. ¹H NMR (90 MHz, CDCl₃): δ0.80 (6H, s, Me-19 and Me-20), 0.87 (3H, s, Me-18), 1.13 (3H, s, Me-17), 1.70 (3H, d, J = 1.0 Hz, Me-16), 4.13 (2H, d, J = 7.0 Hz, H₂-15), 5.45 (t, J= 7.0 Hz, H-14); MS(EI) m/z (rel. int.): 290 [M - 18]⁺ (1), 275 (13), 157 (17), 204 (16), 191 (43), 137 (40), 123 (44), 121 (42), 109 (75), 107 (41), 95 (79), 93 (52), 81 (100).

Elution with MeOH-EtOAc (1:9) gave a yellow oil (490 mg) which was purified by rapid silica gel filtration and prep. TLC to give the triol 4 (156 mg), mp 160–161°, $[\alpha]_D = 3.3^\circ$ (c 0.5; CHCl₃); (Found: $[M-18]^+$, 306.257. $C_{20}H_{36}O_3$ requires $[M-18]^+$, 306.2559). ¹H NMR (90 MHz, CDCl₃): δ0.76 (3H, s, Me-19), 0.82

(3H, s, Me-20), 0.99 (3H, s, Me-18), 1.14 (3H, s, Me-17), 1.70 (3H, s, Me-16), 3.25 (m, $W_{h/2} = 18$ Hz, H-3), 4.15 (d, J = 7.0 Hz, H₂-15), 5.43 (tq, J = 7.0, 1.0 Hz, H-14); MS(EI) m/z (rel. int.): 306 [M [-18] (7), 291 (6), 288 (8), 273 (4), 255 (5), 243 (6), 220 (7), 208 (38), 207 (42), 190 (98), 175 (97), 147 (53), 135 (76), 81 (100).

A portion of the NaHCO₃ soluble fraction (4.48 g) was triturated with hot CHCl3 and filtered to give a white residue (1.88 g) which crystallized from EtOAc to give the hydroxy acid 8 (1.30 g) as cubes, mp 123-124.5°, $[\alpha]_D + 10.4^\circ$ (c 1.9; MeOH); (Found: C, 70.80; H, 10.32. C₂₀H₃₄O₄ requires C, 70.95; H, 10.13%).

Conversion of the triol 4 to (13E)-labda-8(17),13-diene-3,15-diol (6). The triol 4 (109 mg) was treated with Ac₂O in C₅H₅N for 20 hr to give the diacetate 5 as an oil (Found: [M-HOAc]+, 348.265. $C_{24}H_{40}O_5$ requires $[M-HOAc]^+$, 348.2664). IR $v_{max}^{CCl_4}$ cm⁻¹: 3605, 1740 and 1730; ¹H NMR (90 MHz, CDCl₃): δ 0.83 (6H, s, Me-19 and Me-20), 0.86 (3H, s, Me-18), 1.12 (3H, s, Me-17), 1.69 (3H, s, Me-16), 2.01 (6H, s, acetoxymethyl protons), 4.41 (m (br), H-3), 4.51 (2H, s, H₂-15), 5.26 (t (br) H-14); MS(EI) m/z (rel. int.): 348 $[M-60]^+$ (3), 193 (20), 190 (72), 147 (60), 140 (97), 135 (80), 120 (41), 119 (67), 43 (100). The diacetate 5 (169 mg) in dry C₅H₅N (5 ml) and POCl₃ (1 ml) was stirred at 0° for 18 hr. The products (146 mg) recovered appeared from the

C	1	2	3	4	9	10	11
1	39.7	39.7	39.9	39.5	38.0	37.7	39.8
2	19.0*	19.0*	20.6*	27.8	27.1	23.8	34.8
3	42.1	42.1	42.1	79.6	78.6	80.7	219.3
4	33.3	33.3	33.3	40.1	38.9	38.9	48.5
5	56.1	56.1	56.3	56.6	55.1	55.2	56.3
6	18.4*	18.4*	18.5*	21.3*	20.2*	20.2*	22.2*
7	44.0	44.2	42.9†	44.2	44.2	44.2	44.3
8	74.9	74.9	74.2	74.8	74.0	73.9	74.5
9	61.8	62.1	61.3	62.4	61.1	61.2	61.3
10	39.3	39.3	39.3	39.9	38.9	37.8	39.5
11	20.5*	20.5*	23.7	25.3*	23.6*	23.7*	25.1*
12	45.1	45.1	44.6†	45.1	44.6	44.6	45.1
13	73.6	74.1	140.7	140.9	161.0	161.0	162.2
14	146.7	145.1	123.6	124.4	114.9	115.0	116.4
15	111.0	111.9	59.2	59.5	167.4	167.4	170.3
16	26.4	29.5	16.5	16.4	19.1	19.1	19.2
17	24.1	24.4	24.0	23.8	24.0	24.0	23.6
18	33.5	33.5	33.5	28.7	28.2	28.2	26.8
19	21.5	21.5	21.6	16.2	15.9	16.5	21.7
20	15.4	15.4	15.5	16.1	15.4	15.6	15.4
Others					50.7	50.7	
						171.0	
						21.2	

Table 1. ¹³C NMR spectra of labdane derivatives [20.1 MHz, CDCl₃ or CD₃OD (4 and 11)]

¹H NMR spectrum to contain a mixture of the $\Delta^{8(17)}$ -diacetate 7 and the Δ^8 -diacetate in a 2:1 ratio. A portion of this mixture (94 mg) was dissolved in Et₂O (5 ml) and treated with LiAlH₄ (45 mg) at 0° for 5 min. The product (62 mg) was adsorbed on a column of 10% AgNO₃-alumina and elution with pentane-Et₂O gave the diol 6, mp 161-163°, [α]_D + 24.8° (c 0.2; CHCl₃) (lit. [4] mp 164-165°), for the enantiomer [5], mp 160.5-162° and [α]_D - 27° have been reported). ¹H NMR (80 MHz, CDCl₃): δ0.69 (3H, s, Me-20), 0.77 (3H, s, Me-19), 0.99 (3H, s, Me-18), 1.67 (3H, s (br), Me-16), 3.35 (X part of ABX, $J_{AX} + J_{BX}$ 17 Hz, H-3), 4.14 (2H, $J_{AX} + J_{AX} + J_{AX}$

Derivatives of 3\(\beta\),8\(\alpha\)-dihydroxylabd-13-en-15-oic acid (8). (i) Treatment of 8 with ethereal CH2N2 yielded the methyl ester 9 as a colourless oil, bp (block temp.) 230–240°/0.2 mm, $[\alpha]_D + 6.8^\circ$ (c 1.5; CHCl₃); (Found: C, 71.60; H, 10.31. C₂₁H₃₆O₄ requires C, 71.55; H, 10.45%). ¹H NMR (90 MHz, CDCl₃): δ0.76 (3H, s, Me-19), 0.80 (3H, s, Me-20), 0.99 (3H, s, Me-18), 1.16 (3H, s, Me-17), $2.17 (3H, d, J = 1.0 \text{ Hz}, \text{Me-16}), 3.22 (m, W_{h/2} = 18 \text{ Hz}, \text{H-3}), 3.67$ (s, methoxy protons), 5.69 (s (br), H-14); MS(EI) m/z (rel. int.): 352 [M]⁺ (1), 334 (1), 316 (2), 220 (11), 207 (24), 203 (11), 190 (32), 175 (22), 135 (31), 123 (90), 82 (100). (ii) The methyl ester 9 was treated with Ac₂O-C₅H₅N to give the diacetate 10 as an oil; (Found: [M $-HOAc]^+$, 334.249. $C_{22}H_{38}O_5$ requires $[M-HOAc]^+$, 334.2508). ¹H NMR (80 MHz, CDCl₃): δ0.84 (6H, s (br), Me-19 and Me-20), 0.87 (3H, s, Me-18), 1.16 (3H, s, Me-17), 2.05 (s, acetoxymethyl protons), 2.15 (3H, d, J = 1.0 Hz, Me-16), 3.68 (s, MeO protons), 4.43 (m, H-3), 5.68 (q, J = 1.0 Hz, H-14); MS(EI) m/z (rel. int.): 376 [M – 18] + (1), 334 (3), 316 (5), 303 (5), 262 (11), 190 (60), 189 (28), 175 (37), 147 (29), 82 (100). (iii) The dihydroxy acid 8 (100 mg) in dry DMF (5 ml) and pyridinium dichromate (500 mg) was stirred at 0° for 20 hr. The product (95 mg) recovered crystallized from EtOAc as cubes of the keto acid 11, mp 180–181°, $[\alpha]_D + 18.8^\circ$ (c, 0.4, CHCl₃); (Found: C, 71.09; H, 9.20. C₂₀H₃₂O₄ requires C, 71.38; H, 9.59%). ¹H NMR (90 MHz, CDCl₃): δ 0.96 (3H, s, Me-20), 1.03 (3H, s, Me-19), 1.11 (3H, s, Me-18), 1.23 (3H, s, Me-17), 2.18 (3H, d, J = 1.0 Hz, Me-16), 5.72 (s (br), H-14); MS(EI) m/z (rel. int.): 336 [M]⁺ (1), 318 (6), 290 (5), 209 (8), 191 (19), 100 (10), 98 (34), 95 (35), 82 (100).

REFERENCES

- Almqvist, S-O., Enzell, C. R. and Wehrli, F. W. (1975) Acta Chem. Scand. B29, 695.
- Asselineau, C., Bory, S., Fetizon, M. and Lazlo, P. (1961) Bull. Soc. Chim. Fr. 1429.
- Jefferies, P. R. and Payne, T. G. (1965) Aust. J. Chem. 18, 1441.
- 4. Braun, S. and Breitenbach, H. (1977) Tetrahedron 33, 145.
- Mahazan, J. R. and Ferreira, L. A. L. (1971) An. Acad. Brasil Cienc. 43, 611.
- Hugel, G., Oehlschlager, A. C. and Ourisson, G. (1966) Tetrahedron (Suppl. 8, part 1), 203.
- Buckwalter, B. L., Burfitt, I. R., Nagel, A. A., Wenkert, E. and Naf, F. (1975) Helv. Chim. Acta 58, 1567.
- Imamura, P. M., Marsaioli, A. J., Barata, L. E. S. and Ruveda, E. A. (1977) Phytochemistry 16, 1842.
- Crews, P. and Kho-Wiseman, E. (1978) Tetrahedron Letters 2483.
- Ghisalberti, E. L., Jefferies, P. R. and Stuart, A. D. (1979) Aust. J. Chem. 32, 1627.
- Popa, D. P. and Lazur'veski, G. V. (1963) Zh. Obshch. Khim.
 33, 303 (Chem. Abstr. 59, 1688a).

^{*†} Values with identical superscripts in any one column may be interchanged.